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ABSTRACT
Spatially convoluting formulations have been used to describe nonlocal thermal transport, yet there is no related investigation at the micro-
scopic level such as the Boltzmann transport theory. The spatial fractional-order Boltzmann transport equations (BTEs) are first applied
to the description of nonlocal phonon heat transport. Constitutive and continuity equations are derived, and two anomalous behaviors are
thereafter observed in one-dimensional steady-state heat conduction: one is the power-law length-dependence of the effective thermal con-
ductivity, κeff ∝ Lβ with L as the system length, and the other is the nonlinear temperature profile, [T(x) − T(x = 0)] ∼ x1+η. A connection
between the length-dependence and nonlinearity exponents is established, namely, β = −η. Furthermore, we show that the order of these
BTEs should be restricted by the ballistic limit. In minimizing problems, the nonlocal models in this work give rise to different results from
the case of Fourier heat conduction, namely that the optimized temperature gradient is not uniform.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0021058., s

I. INTRODUCTION
In the past decades, temporal fractional-order derivatives

have been applied to various physical processes and systems, i.e.,
anomalous diffusion1–3 and non-Fourier heat conduction.4–7 In
recent years, temporal fractional-order modeling of heat conduction
attracts increasing interest.8,9 Generally speaking, heat conduction
in three-dimensional bulk materials obeys Fourier’s law,

q = −κ∇T. (1)

In Eq. (1), q = q(x, t) denotes the heat flux, T = T(x, t) is the local
temperature, and κ is the thermal conductivity. One unsatisfactory
feature of Fourier’s law is that it predicts an infinite speed of heat
propagation,10–13 which is traceable to the parabolic governing equa-
tion of the local temperature. The most well-known modification to
overcome this unphysical behavior is the Cattaneo model,14 which
adds a relaxation correction to Eq. (1), namely,

q + τ
∂q
∂t
= −κ∇T, (2)

with τ as the relaxation time. Combining the Cattaneo model with
the standard continuity equation yields a hyperbolic governing
equation as follows:

∂T
∂t

+ τ
∂2T
∂t2 =

κ
c
∇

2T, (3)

with c standing for the specific heat capacity per volume. Equa-
tion (3) guarantees a finite speed

√
κ/cτ yet is still paired with

other unsatisfactory problems15–18 such as negative temperature and
entropy generation.

Many generalizations have been proposed for the Cattaneo
model. The Jeffery model10 is a typical one, which assumes a coex-
istence of Fourier and hyperbolic transport regimes of heat conduc-
tion. Another common example is the phase-lagging class,19 i.e.,

q(x, t + τ) = −κ∇T(x, t). (4)

Fractional-order derivatives have also been applied to extending the
Cattaneo model.20–23 A classic example is the so-called generalized
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Cattaneo equation (GCE) by Compte and Metzler,20 which proposed
a class of fractional-order generalizations. In this class, temporal
fractional-order derivatives are introduced into the constitutive and
continuity equations, i.e.,

q + ταRL0 Dα
t q = −κ∇T. (5)

In Eq. (5), RL
0 Dα

t is the temporal Riemann–Liouville operator,
namely,

RL
0 Dα

t q(x, t) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1
Γ(n − α)

∂n

∂tn ∫
t

0

1
∣t − t′∣α+1−n q(x, t′)dt′, α > 0

1
Γ(−α) ∫

x

0

1
∣t − t′∣α+1 q(x, t′)dx′, α < 0,

(6)

wherein n ∈ N ∩ (α,α + 1) and q(x, t) is at least n-order differ-
entiable. The corresponding long-time and short-time asymptotic
behaviors of the mean-square displacement (MSD) were thereafter
investigated. The above non-Fourier models exhibit memory effects
between the heat flux and the temperature gradient, which can be
formulated as a convolution as follows:10

q(x, t) = ∫
t

0
K(t − t′)∇T(x, t′)dt′. (7)

In Eq. (7), the memory kernel K(t − t′) is usually termed the relax-
ation function, which is an exponential function for the Catta-
neo model. For the phase-lagging class, K(t − t′) obeys the Dirac
delta function and will become the Mittag–Leffler functions for the
fractional-order generalizations.

The formulation in Eq. (7) aims to describe non-Fourier effects
when the characteristic time of a thermal transport process is com-
parable to or even much smaller than the relaxation time. Another
natural non-Fourier aspect is that the characteristic size of a ther-
mal transport process is comparable to or even much smaller than
the mean free path. Such non-Fourier effects cannot be expected
by Eq. (7) because it will reduce to Fourier’s law in stationary ther-
mal transport. Therefore, convolution constitutive models including
the fractional-order type shall be proposed for the spatial variable
as well. For instance, Sapora and co-authors24 have generalized the
Caputo operator and applied it to one-dimensional (1D) steady-state
heat conduction in 0 ≤ x ≤ L, namely,

q(x) =
κcα

2Γ(α) ∫
L

0

1
∣x − x′∣1−α

∇T(x′)dx′, (8)

with cα as a material constant. A similar nonlocal constitutive rela-
tion has been proposed for the silicon thin film25 as well. Such
convolution formulation is from an analogy with the existing elas-
tic theory, namely that the stress at a point x = x0 in an elastic
body depends on not only the strain at x = x0 but also strains at
all other points. Existing studies on the fractional-order nonlocality
of thermal transport mainly focus on the macroscopic constitutive
models and lack discussion on the underlying microscopic regimes
such as the Boltzmann transport theory, which will be addressed in
this paper. We mention that the nonlocality from the integer-order
Boltzmann transport theory has been studied,26–31 and the nonlocal
effects are commonly induced by the second-order derivatives of the
heat flux such as (∇2q) and (∇∇ ⋅ q). This class is usually termed

phonon hydrodynamics and has been employed to explain non-
Fourier behaviors observed in experiments.32–34 Obviously, such
nonlocal terms will vanish in 1D heat conduction without the heat
source, which is fundamentally different for the fractional-order
nonlocal forms such as Eq. (8).

In this work, we consider the phonon thermal transport regime
in terms of the phonon Boltzmann transport equation (BTE), i.e., the
single mode relaxation time35,36 and Callaway37 models. These BTE-
based models correspond to a localized physical picture, namely
that the derivatives of the distribution function at x = x0 are only
determined by the collision term at x = x0. In this work, nonlocal
regimes of phonon transport are first investigated via generalizing
the phonon BTE into fractional-order forms, wherein the deriva-
tives at x = x0 depend on the global evolution in 0 ≤ x ≤ L. Based
on the generalized BTEs, macroscopic constitutive and continuity
equations are then established, which can give rise to anomalous
signatures. According to a sound review by Lepri et al.,38 the anoma-
lies in heat conduction can be classified as five signatures including
the length-dependent effective thermal conductivity, slow decay of
the heat current correlation function, anomalous MSD, nonlinear-
ity of stationary temperature profiles, and fast relaxation of spon-
taneous fluctuations. In the present work, two anomalous signa-
tures are observed. One is the length-dependent effective thermal
conductivity,39–43

κeff = κeff (L) = −
q(L)L

T(x = L) − T(x = 0)
. (9)

In 1D systems, κeff (L) is commonly power-law, κeff (L) ∼ Lβ. Typical
examples40 are the billiard gas channel models and Fermi–Pasta–
Ulam (FPU) chain. For two-dimensional (2D) systems, the length-
dependence commonly becomes logarithmic, κeff (L) ∼ logL, i.e.,
2D momentum conserving systems44 (we mention that there also
exists a numerical calculation45 that supports the power-law length-
dependence for 2D cases). The other is the nonlinearity of stationary
temperature profiles, which is asymptotic to a power-law function at
the boundary,

[T(x) − T(x = 0)] ∼ x1+η, x → 0. (10)

Therefore, we provide a BTE-based framework for modeling nonlo-
cal thermal transport with the two anomalies. The two non-Fourier
behaviors cannot be expected by previous nonlocal theories such
as phonon hydrodynamics, which will generally reproduce Fourier
heat conduction in the large size limit. It indicates that the fractional-
order nonlocal theory can extend the existing framework of phonon
thermal transport. Furthermore, the fractional-order nonlocal type
is able to describe non-Fourier regimes beyond phonon hydrody-
namics, i.e., anomalous heat diffusion following the Levy walk.38

Furthermore, a connection between the divergence and nonlin-
earity exponents will be established. We mention that our previ-
ous papers46–48 have discussed the temporal fractional-order BTEs,
which correspond to the relaxation or memory effect rather than
the nonlocality. Here, we propose the spatial fractional-order BTEs
for the nonlocal effects, which predict non-Fourier anomalies differ-
ent from the temporal fractional-order situations, i.e., the nonlinear
temperature profiles. Another difference from our previous works is
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related to the minimizing problems. The temporal fractional-order
models expect the same stationary solution as Fourier’s law, and
hence, the corresponding optimized results will remain unchanged.
In contrast, the nonlocal heat conduction in this work will give rise
to non-Fourier optimized results, namely that the optimized temper-
ature gradient is not uniform. These are the main original aspects of
this paper.

II. PHONON BOLTZMANN TRANSPORT EQUATIONS
AND NONLOCAL GENERALIZATIONS

Usual phonon transport is described by the following BTE with
the single mode relaxation time approximation:

∂f
∂t

+ vg ⋅∇f =
f0 − f
τ

, (11)

where f = f (x,k, t) denotes the phonon distribution function, k is
the wave vector, f0 = 1

exp( h̵ω
kBT
)−1

is the equilibrium distribution, h̵ is

the reduced Planck constant,ω is the angle frequency, kB is the Boltz-
mann constant, and vg is the phonon group velocity. For phonon
heat transport, the local energy density is given by

e = e(x, t) = ∫ f (x,k, t)h̵ωdk, (12)

while the heat flux reads

q(x, t) = ∫ vg f (x,k, t)h̵ωdk = ∫ vg[f (x,k, t) − f0]h̵ωdk. (13)

Based on the above expressions, one can obtain the standard energy
continuity equation by multiplying Eq. (11) by h̵ω and integrating it
over the wave vector space, namely,

∂e
∂t
= c

∂T
∂t
= −∇ ⋅ q. (14)

When we multiply Eq. (11) by vg h̵ω and integrate it over the wave
vector space, the standard Cattaneo model emerges. It should be
mentioned that the standard Cattaneo model is able to be derived
from Eq. (11) only in the presence of local equilibrium, which allows
the assumption ∇f ≈ ∇f0. This condition will be invalidated in the
situations that the characteristic size and time are comparable to
the mean free path (MFP) l = ∣vg ∣τ and relaxation time, respec-
tively. Then, the solution of Eq. (11) will give rise to derivations
from the standard Cattaneo model. A typical example is Chen’s
solution termed ballistic-diffusive heat conduction equations.36 In
Chen’s method, the distribution function is divided into two parts,
f = fm + fb. fm corresponds to the diffusive transport, which cor-
responds to the standard Cattaneo model. fm reflects the ballis-
tic contribution beyond the Cattaneo model and leads to the so-
called ballistic heat flux. Although the single mode relaxation time
approximation is widely applied to heat conduction, its prediction
underestimates the thermal conductivity of two-dimensional mate-
rials,49 which are traceable to the effects of the normal scattering.
Thus, more refined modifications were applied, i.e., Callaway’s dual
relaxation approximation,37

∂f
∂t

+ vg ⋅∇f =
f0 − f
τR

+
fD − f
τN

, (15)

where τR is the relaxation time of resistive process, τN is the relax-
ation time of normal process, fD = 1

exp( h̵ω−h̵k⋅u
kBT

)−1
is the displaced

Planck distribution, and u is the phonon drift velocity determined
by the quasi-momentum conservation.

Equations (11) and (15) are commonly used BTEs for phonon
heat transport. In this work, we discuss their spatial fractional-order
generalizations, namely,

∂f
∂t

+ vg ⋅∇f = lμDμ
x(

f0 − f
τ
), (16a)

∂f
∂t

+ lμDμ
x(vg ⋅∇f ) =

f0 − f
τ

, (16b)

∂f
∂t

+ vg ⋅∇f = lμDμ
x(

f0 − f
τR

+
fD − f
τN
), (16c)

∂f
∂t

+ lμDμ
x(vg ⋅∇f ) =

f0 − f
τR

+
fD − f
τN

, (16d)

where μ ∈ R and Dμ
x is the spatial fractional-order operator. The

above BTEs indicate nonlocal effects in phonon transport, namely
that the evolution of the distribution function at x = x0 depends on
the drift and collision terms at not only x = x0 but also x ≠ x0. The
corresponding energy continuity equations can be obtained upon
multiplying the above BTEs by h̵ω and integrating them over the
wave vector space. When the fractional-order derivative occurs in
the collision terms such as Eqs. (16a) and (16c), the energy conti-
nuity equation remains Eq. (14). For Eqs. (16b) and (16d), the cor-
responding energy continuity equation deviates from the standard
form, namely,

∂e
∂t

+ lμDμ
x(∇ ⋅ q) = 0. (17)

Upon multiplying Eqs. (16a) and (16b) by vg h̵ω and integrating them
over the wave vector space, we can derive the following constitutive
equations, respectively:

lμDμ
xq + τ

∂q
∂t
= −κ∇T, (18a)

q + τ
∂q
∂t
= −lμDμ

x(κ∇T). (18b)

Different from the single mode relaxation time approximation, there
are various macroscopic constitutive equations for the Callaway
model and its fractional-order generalizations. If we use the eigen-
value analysis method or sub-first-order approximation34 to solve
Eqs. (16c) and (16d), the corresponding constitutive equations are,
respectively, given by

τR
∂q
∂t

+ κ∇T = lμDμ
x[

1
5
∣vg ∣2τRτN∇2q +

2
5
∣vg ∣2τRτN∇(∇ ⋅ q) − q],

(19a)

q + τR
∂q
∂t

+ lμDμ
x(κ∇T) =

1
5
∣vg ∣2τRτN∇2q +

2
5
∣vg ∣2τRτN∇(∇ ⋅ q),

(19b)
which will reduce to the well-known Guyer–Krumhansl type as
μ = 0. For 1D steady-state problems, we have dq

dx = 0. Then,
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Eqs. (19a) and (19b) will reduce to Eqs. (18a) and (18b), respectively.
Some equations in this section possess similar forms to our previous
works. Despite the mathematical similarity, the non-Fourier regime
of this work is fundamentally different because the fractional-order
operators are here for the spatial variable rather than the temporal
variable. The spatial fractional-order operators are parried with the
nonlocal effects, while the temporal fractional-order operators yield
the memory effects.

III. RESTRICTIONS AND ANOMALIES
In this section, we will show that there exist several physical

restrictions on the operator Dμ
x . We first select the spatial Riemann–

Liouville operator as Dμ
x ,

Dμ
x f (x,k, t) = RL

0 Dμ
x f (x,k, t)

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ(n′ − μ)

∂n′

∂xn′ ∫
x

0

1
∣x − x′∣μ+1−n′ f (x

′,k, t)dx′,μ > 0

1
Γ(−μ) ∫

x

0

1
∣x − x′∣μ+1 f (x

′,k, t)dx′,μ < 0,

(20)

with n′ ∈ N ∩ (μ,μ + 1). In this case, the 1D stationary temperature
distribution and heat flux predicted by Eq. (18a) are given by

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

T(x) = T(x = 0) + ΔT(
x
L
)

1−μ
,

q(x) = −κ
Γ(1 − μ)
L1−μlμ

ΔT,

(21)

with ΔT = T(x = L) − T(x = 0). Equation (21) implies a power-law
length-dependent effective thermal conductivity κeff , namely,

κeff = κΓ(1 − μ)(
L
l
)
μ
∝ Lμ ⇒ β = μ, (22)

which agrees with the generic behavior of 1D systems. The critical
situation is that μ = 1. This is because β = 1 corresponds to the bal-
listic transport, which is an upper bound of the length-dependence
exponent β. Furthermore, μ = 1 will cause a singularity in Eq. (21),
which requires dT

dx ≡ 0. Thus, the order should be restricted as μ < 1
from either physical or mathematical viewpoint. According to usual
understandings of anomalous heat conduction,38 0 < β < 1 cor-
responds to the superdiffusive regime, while β < 0 emerges from
subdiffusive heat conduction. Therefore, superdiffusive heat con-
duction can be modeled in terms of Eq. (16a) with 0 < μ < 1, and
in the subdiffusive case, μ < 0. We can also observe a nonlinear
stationary temperature profile in Eq. (21), namely,

[T(x) − T(x = 0)] ∼ x1−μ
⇒ η = −μ. (23)

Combining β = μ and η = −μ yields a connection between the
length-dependence and nonlinearity exponents,

β = −η. (24)

This connection means that the transport regime and tempera-
ture profile are not independent of each other in nonlocal phonon
transport. Subdiffusive heat conduction (β < 0) will correspond

to a superlinear temperature profile, while superdiffusive heat con-
duction (β > 0) must be paired with a sublinear temperature
profile.

For Eq. (16b), the solutions become

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

T(x) = T(x = 0) + ΔT(
x
L
)
μ+1

,

q = −κ
Γ(μ + 2)lμ

Lμ+1 ΔT.

(25)

Similar to the above case, there also exists a power-law length-
dependent effective thermal conductivity,

κeff = κΓ(μ + 2)(
l
L
)

μ
∝ L−μ ⇒ β = −μ. (26)

The ballistic limit β = 1 leads to μ ≥ −1. The subdiffusive and
superdiffusive regimes correspond to μ > 0 and −1 < μ < 0,
respectively. The stationary temperature profile is nonlinear as well,

[T(x) − T(x = 0)] ∼ x1−μ
⇒ η = μ, (27)

and the relation between β and η remains Eq. (24). We now consider
Eqs. (16a) and (16b) based on the Caputo operator as follows:

Dμ
x f (x,k, t) = C

0 D
μ
x f (x,k, t)

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ(n − μ) ∫

x

0

1
∣x − x′∣μ+1−n

∂n′ f (x′, t,k)
∂x′n′

dx′,μ > 0

1
Γ(−μ) ∫

x

0

1
∣x − x′∣μ+1 f (x

′, t,k)dx′,μ < 0.

(28)

Noting that the Caputo and Riemann–Liouville operators are iden-
tically equal as μ < 0, and hence, we only discuss the case of
μ > 0. When μ > 0, there is no near-equilibrium solution for
Eq. (16a) unless dT

dx ≡ 0, which indicates that the Caputo operator
is inapplicable. For Eq. (16b), the solution are still given by Eq. (25).

IV. SYMMETRIZATION AND MINIMIZING PROBLEM
A. Symmetrization

The above fractional-order generalizations reflect asymmetric
nonlocality, namely that phonon transport at x depends on the evo-
lution of the distribution function in [0, x], but the evolution in
(x,L] has no contribution. In order to acquire a symmetrical non-
locality, the above fractional-order operators can be symmetrized as
follows:

Dμ
x f (x,k, t) = RL

0,LD
μ
x f (x,k, t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2Γ(1 − μ)

{
∂

∂x
[∫

x

0

1
∣x − x′∣μ

f (x′,k, t)dx′]

−
∂

∂x
[∫

L

x

1
∣x − x′∣μ

f (x′,k, t)dx′]}, 0 < μ < 1

1
2Γ(−μ) ∫

L

0

1
∣x − x′∣μ+1 f (x

′,k, t)dx′,μ < 0,

(29a)
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Dμ
x f (x,k, t) = C

0,LD
μ
x f (x,k, t)

=
1

2Γ(−μ) ∫
L

0

1
∣x − x′∣μ+1 f (x

′, t,k)dx′,μ < 0. (29b)

For Eq. (29a), the stationary solutions are given by

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

T(x) = T(x = 0) +
ΔT
2
[1 + (

x
L
)

1−μ
− (

L − x
L
)

1−μ
],

q = −κ
Γ(2 − μ)
L1−μlμ

ΔT.

(30)

The effective thermal conductivity is still Eq. (22), and the nonlin-
earity of the temperature profile is symmetric,

⎧⎪⎪
⎨
⎪⎪⎩

[T(x) − T(x = 0)] ∼ x1−μ, x → 0,

[T(x) − T(x = L)] ∼ (L − x)1−μ, x → L.
(31)

The stationary solutions for Eq. (29b) are written as

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

T(x) = T(x = 0) +
ΔT
2
[1 + (

x
L
)

1+μ
− (

L − x
L
)

1+μ
],

q = −κ
Γ(2 + μ)lμ

L1+μ ΔT.

(32)

The effective thermal conductivity remains as in Eq. (26), and the
temperature profile possesses the following asymptotics:

⎧⎪⎪
⎨
⎪⎪⎩

[T(x) − T(x = 0)] ∼ x1−μ, x → 0,

[T(x) − T(x = L)] ∼ (L − x)1−μ, x → L,
(33)

which is also symmetric.

B. Minimizing problem
In optimization design of heat transfer, minimizations of phys-

ical quantities have been widely used as optimizing strategies.50–52

The entransy dissipation minimization52 is a typical strategy. For 1D
steady-state problems in 0 ≤ x ≤ L, the total entransy dissipation rate
Ġ is given by

Ġ = ∫
L

0
(−q

dT
dx
)dx. (34)

In the following, we will show the derivations between the nonlo-
cal models in this work and Fourier’s law in the entransy dissipa-
tion minimization. We consider a minimizing problem that is con-
strained by the boundary heat flux q(x = 0) = q0 and total amount
of the thermal conductivity,

∫

L

0
κ(x)dx ≡ κ0 = constant. (35)

For Fourier heat conduction, minimization of Ġ will lead to a
constant temperature gradient,

∣
dT(x)
dx
∣ ≡ constant. (36)

Owning to the existence of fractional-order derivatives, the usual
Lagrange multiplier approach is invalid for nonlocal heat transport.
In order to minimize the entransy dissipation, we introduce the
following Cauchy–Bunyakowsky–Schwarz inequality:

Ġκ0 = [∫

L

0
−q(

dT
dx
)dx](∫

L

0
κdx) ≥

⎡
⎢
⎢
⎢
⎢
⎣

∫

L

0

√

−qκ(
dT
dx
)dx
⎤
⎥
⎥
⎥
⎥
⎦

2

.

(37)
For Eq. (18a), we have

⎡
⎢
⎢
⎢
⎢
⎣

∫

L

0

√

−qκ(
dT
dx
)dx
⎤
⎥
⎥
⎥
⎥
⎦

2

= [∫

L

0

√

q ⋅ (lμDμ
xq)dx]

2

=
q2

0L
2−μlμ

Γ(1 − μ)(1 − μ
2 )

2 = constant, (38)

and thereupon, Ġ fulfills the following inequality:

Ġ ≥
q2

0L
2−μlμ

κ0Γ(1 − μ)(1 − μ
2 )

2 , (39)

which becomes equality if and only if

xμ∣
dT(x)
dx
∣

2

= constant⇒ x
μ
2 ∣
dT(x)
dx
∣ = constant. (40)

Different from the optimized result in Eq. (36), the optimized tem-
perature gradient in Eq. (40) is not uniform. It implies that nonlocal
heat transport based on the fractional-order derivatives will per-
form non-Fourier behaviors in minimizing problems as well. For
Eq. (18b), the Cauchy–Bunyakowsky–Schwarz inequality yields

Ġ ≥
q2

0L
2+μ

κ0lμΓ(1 + μ)(1 + μ
2 )

2 = constant, (41)

and the corresponding optimized temperature gradient satisfies

x−μ∣
dT(x)
dx
∣

2

= constant⇒ x−
μ
2 ∣
dT(x)
dx
∣ = constant, (42)

which still differs from the optimized result in Fourier heat conduc-
tion.

V. CONCLUDING REMARKS
1. The spatial fractional-order derivatives are first introduced

into the phonon BTEs, which reflects nonlocal effects in
heat transport. The corresponding constitutive and conti-
nuity equations are thereupon derived, which also contain
fractional-order derivatives. Based on the constitutive and con-
tinuity equations, the temperature distribution and heat flux
are derived for 1D steady-state heat conduction.

2. Anomalies are thereafter observed, including the power-law
length-dependence of the effective thermal conductivity and
nonlinear temperature profile. We also establish a connection
between the length-dependence κeff ∝ Lβ and nonlinearity
[T(x) − T(x = 0)] ∼ x1+η, namely, β = −η. Furthermore, we
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show that the order μ should be restricted due to the ballistic
limit.

3. In order to reflect a symmetric nonlocality in phonon trans-
port, the Caputo and Riemann–Liouville operators are sym-
metrized. The symmetrized modifications predict the same
length-dependence as the original models. The corresponding
temperature profiles are nonlinear as well, which are asymp-
totic to power-law functions at the two boundaries.

4. Minimizing problems in steady-state heat conduction are dis-
cussed. For the entransy dissipation minimization, the non-
local models in this work will lead to different optimized
results from the result of Fourier heat conduction, namely, the
non-uniform optimized temperature gradient.
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